An example of a CRC-32 based error-correcting block device backed by RAM.
corrupted:
' ..:::::::::::.:. .:::....:::.. :.' ''::..:':: '.:.::'.: '':.
.:::::::::::::::::::.. . ::'::::::::...:::.: :'.'::: .' ..:.: :.' '.
'.::::::::::::::::::::::::. ' ::::::::::' . .' ': . :'' . ': .: :. ..:::
.:::::::::::::::::::::::::::. . . ::::'::::: ' . ''.:. ..:. : ::.':.'::. ....
. .:::::::::::::::::::::::::::::: ... :: :'::::::' :.:....:..: . . ' '':.: :
:::::::::::::::::::::::::.:::'' .. '::: ' ''' :..'::'.'''.:'. :''::. ' ' .'..
::::::::::::'::::::::::::::''..:::::'' : .'' ::'. : .:'.'' .'' ' .. ..
:::::::::::::::::::::::'' ..:::::'' . ''' :'.: :'.:. :': .':'..': :.'.
:::::':::::::::::::'' ..:::::'' .' '' .::. . . :: .''::'. '.. ...
..:'::::::::::::::''' ..:::::'' ...:: '' ::..':' :' .....:'' :'. ::.
. :::' :::::::::' ..::::::': ..::::::: . '' .:: :. '.: .''': :: .:.'' :
:::' ':::'' ...:.::::':...:::::::::: ': :.:':: ..: .'' : ::..: .'' :
::' ...::::::'' ..:::::':':::::' ' . . .:' : ''':':'.:..' :'::':.'':
....::::::::' . ::::::::::.::::::' . ::.: :' . '.:. .. .' ...'.:':.'
'::::::::''' :::::::::::::::::::'' ' . :: ::' :' ':' .'...'': ' ':':
'':::::::::::''' . . ' ' ::::. '.'. ::: . . '.' ' '..'
corrected:
..:::::::::::... .:::....:::.. :.' '':: .:::: '.:.:::.: '':.
.:::::::::::::::::::.. ::::::::::::..:::.: :'.':': .' ..:.: :.' '.
.::::::::::::::::::::::::. ::::::::::' . .' ': . :'' . ': .: :. ..:::
.:::::::::::::::::::::::::::. . :::::::::: ' . ''.:. ..:. : ::.':.'::. ....
.:::::::::::::::::::::::::::::: ... :: :'::::::' :.:....:..: . . ' '':.: :
:::::::::::::::::::::::::::::'' .. '::: ' ''' :..'::'.'''.:'..:''::. ' ' .'..
:::::::::::::::::::::::::::''..::::: ' : .'' ::'. : .::.'' .'' ' .. ..
:::::::::::::::::::::::'' ..:::::'' ''' :'.: ''.:. :': :':'..': :.'.
:::::::::::::::::::'' ..:::::'' . ' .::. . . :: .''::'. '.. ...
..: ::::::::::::::''' ..:::::'' ..::: '' ::..':' :' .....:'' :'. ::.
..:::' :::::::::'' ..::::::'' ..::::::: '' .:: :. '.: .''': :: .:.'' :
:::' ':::'' ...::::::''...:::::::::: ': ' :':: ..: .'' : ::..: .'' :
::' ...::::::'' ..:::::::::::::' . .:' : ''':':'.:..' :'::':.'':
....:::::::'' ..:::::::::::::::::' ::.: :' . '.:. .. .' ...'.:':.'
'::::::::''' :::::::::::::::::::'' . :: ::' :' ':' .'...'': ' ':':
'':::::::::::''' :::'. '.'. ::: . . '.' ' '..'
Often overlooked, the humble CRC can already provide a simple form of error detection and correction, capable of repairing a handful of bit-errors.
Assuming a Hamming distance HD
for a given codeword size, ramcrc32bd
can correct up to floor((HD-1)/2)
bit errors. In its current
configuration, ramcrc32bd can correct:
- 1 bit error up to ~512 KiB codewords (HD=3 up to 4294967263 bits)
- 2 bit errors up to 371 byte codewords (HD=5 up to 2974 bits)
- 3 bit errors up to 21 byte codewords (HD=7 up to 171 bits)
It does scale poorly,
This block device uses littlefs's CRC-32, since we assume it's already available. But the same idea can be extended to any other CRC, as long as it has a sufficient Hamming distance for the desired codeword size.
A quick comparison of current ram-ecc-bds:
code | tables | stack | buffers | runtime | |
---|---|---|---|---|---|
ramcrc32bd | 940 B | 64 B | 88 B | 0 B | |
ramrsbd | 1506 B | 512 B | 128 B | n + 4e B |
See also:
Right now, littlefs's block device API is limited in terms of composability. While it would be great to fix this on a major API change, in the meantime, a RAM-backed block device provides a simple example of error-correction that users may be able to reimplement in their own block devices.
Testing is a bit jank right now, relying on littlefs's test runner:
$ git clone https://github.com/littlefs-project/littlefs -b v2.9.3 --depth 1
$ make test -j
First, a quick primer on CRCs.
Some of why CRCs are so prevalent because they are mathematically quite pure. You view your message as a big binary polynomial, divide it by a predetermined "generator polynomial" (choosing a good polynomial is the hard part), and the remainder is your CRC:
message = "hi!":
= 01101000 01101001 00100001
polynomial = 0x107:
= 1 00000111
binary division:
= 01101000 01101001 00100001 00000000
^ 1000001 11
= 00101001 10101001 00100001 00000000
^ 100000 111
= 00001001 01001001 00100001 00000000
^ 1000 00111
= 00000001 01110001 00100001 00000000
^ 1 00000111
= 00000000 01110110 00100001 00000000
^ 1000001 11
= 00000000 00110111 11100001 00000000
^ 100000 111
= 00000000 00010111 00000001 00000000
^ 10000 0111
= 00000000 00000111 01110001 00000000
^ 100 000111
= 00000000 00000011 01101101 00000000
^ 10 0000111
= 00000000 00000001 01100011 00000000
^ 1 00000111
= 00000000 00000000 01100100 00000000
^ 1000001 11
= 00000000 00000000 00100101 11000000
^ 100000 111
= 00000000 00000000 00000101 00100000
^ 100 000111
= 00000000 00000000 00000001 00111100
^ 1 00000111
-------------------------------------
= 00000000 00000000 00000000 00111011
'--.---'
.---------------------------'
v
crc = 0x3b
You can describe this mathematically in GF(2), but depending on your experience with GF(2) and other finite-fields, the above example may be easier to understand:
The extra
The neat thing is that this remainder operation does a real good job of mixing up all the bits. So if you choose a good CRC polynomial, it's very unlikely a message with a bit-error will result in the same CRC:
a couple 1-bit errors:
= 01101010 01101001 00100001 00000000 => 11101101 (0xed != 0x3b)
= 01101000 01101000 00100001 00000000 => 00101110 (0x2e != 0x3b)
= 01101000 01101001 01100001 00000000 => 11111100 (0xfc != 0x3b)
= 01101000 01101001 00100001 00001000 => 00110011 (0x33 != 0x3b)
How unlikely? Well thanks to Philip Koopman's exhaustive CRC work, we know exactly how many bit-errors we need to see a collision for a given CRC polynomial and message size. This is called the Hamming distance, and is a very useful metric for an error-correcting code.
Koopman's NOTES page may be the best starting point for interpreting these results. They're dense but an amazing resource!
For this 8-bit CRC, p=0x107, Philip Koopman's work shows a Hamming distance of 4 up to a message size of 119 bits (14 bytes), which means our 3-byte message should have no collisions up until 4 bit-errors:
a 4-bit collision:
= 01101000 01101000 00100110 00000000 => 00111011 (0x3b == 0x3b)
But the interesting thing about Hamming distance is that it's, well, a distance.
A Hamming distance of 4 means that there are at least 3 invalid codewords between every valid codeword:
Hamming distance = 4
.-----------------------------'-----------------------------.
o <-bit-flip-> x <-bit-flip-> x <-bit-flip-> x <-bit-flip-> o
^ '--------------.--------------' ^
| | |
valid codeword invalid codewords valid codeword
If we assume our message has a single bit-error, it will be 1 bit-flip away from the original codeword, and at least 3 bit-flips away from any other codeword. It's not until we have 2 bit-errors that the original codeword becomes ambiguous.
But this is only an 8-bit CRC. With more bits, we can usually find a
better CRC. littlefs's 32-bit CRC, p=0x104c11db7,
for example, has a Hamming distance of 7 up to 171 bits (21 bytes), which
means for any message
In general the number of bits we we can reliably correct is
Ok, but that's enough about theory. How do actually correct these bit-errors?
The simple/naive/cheap answer is brute force. Try every bit-flip until we
find a matching CRC. Since we know our Hamming distance is
brute force search:
= 01101000 01101001 01100001 00000000 => 11111100 (0xfc != 0x3b)
^ 1 => 11110111 (0xf7 != 0x3b)
^ 1 => 01111010 (0x7a != 0x3b)
^ 1 => 10111111 (0xbf != 0x3b)
^ 1 => 01011110 (0x5e != 0x3b)
^ 1 => 10101101 (0xad != 0x3b)
^ 1 => 01010111 (0x57 != 0x3b)
^ 1 => 00101010 (0x2a != 0x3b)
^ 1 => 10010111 (0x97 != 0x3b)
^ 1 => 01001010 (0x4a != 0x3b)
^ 1 => 10100111 (0xa7 != 0x3b)
^ 1 => 01010010 (0x52 != 0x3b)
^ 1 => 10101011 (0xab != 0x3b)
^ 1 => 01010100 (0x54 != 0x3b)
^ 1 => 10101000 (0xa8 != 0x3b)
^ 1 => 11010110 (0xd6 != 0x3b)
^ 1 => 11101001 (0xe9 != 0x3b)
^ 1 => 01110101 (0x75 != 0x3b)
^ 1 => 00111011 (0x3b == 0x3b) !!! found our bit-error
corrected message:
= 01101000 01101001 00100001 00000000 => 00111011 (0x3b == 0x3b)
If we don't find a valid codeword, we must have had at least 2 bit-errors, making our original codeword unrecoverable.
This idea can be extended to CRCs with larger Hamming distances by brute
force searching multiple bit-errors with nested loops. See
ramcrc32bd_read
for an example of up to 3 bit-errors with littlefs's
CRC-32.
There are a couple implementation tricks worth noting in ramcrc32bd:
-
Try the faster solutions first.
Correcting 1 bit-error
$O(n)$ , is much faster than correcting 2 bit-errors$O(n^2)$ , and 1 bit-errors are also much more common. It makes sense to only search for more bit-errors when a solution with fewer bit-errors can't be found.By trying fewer bit-errors first, ramcrc32bd should return quickly in the common case of few/no bit-errors.
Though this does risk degraded performance over time as bit-errors develop.
-
We don't actually need to permute the message to try every bit-flip.
First note that since CRCs are a glorified remainder operation, shifting a message (multiplying by
$x$ in GF(2)) and then calculating the CRC is equivalent to shifting the CRC and then calculating the remainder:crc(a << 1): = 00111001 10110100 00110110 00000000 => 01000010 (0x42) s 01110011 01101000 01101100 00000000 => 10000100 (0x84) s 11100110 11010000 11011000 00000000 => 00001111 (0x0f) (crc(a) << 1) % p: = 00111001 10110100 00110110 00000000 => 01000010 (0x42) s 0 10000100 ^ 0 00000000 = 10000100 (0x84) s 1 00001000 ^ 1 00000111 = 00001111 (0x0f)
We can use this to quickly iterate through all CRCs that represent a single bit:
a = (a << 1) % p: = 00000001 => 00000001 (0x01) s 00000010 => 00000010 (0x02) s 00000100 => 00000100 (0x04) s 00001000 => 00001000 (0x08) s 00010000 => 00010000 (0x10) s 00100000 => 00100000 (0x20) s 01000000 => 01000000 (0x40) s 10000000 => 10000000 (0x80) s (1)00000000 => 00001110 (0x0e) s (1) 00000000 => 00011100 (0x1c) s (1) 00000000 => 00111000 (0x38) s (1) 00000000 => 01110000 (0x70) s (1) 00000000 => 11100000 (0xe0) s (1) 00000000 => 11000111 (0xc7) s (1) 00000000 => 10001001 (0x89) s (1) 00000000 => 00010101 (0x15)
Combining this with the fact that CRCs are linear, i.e. the CRC of the xor of two messages (addition in GF(2)) is equivalent to the xor of two CRCs:
crc(a ^ b): = 01100001 01100100 01100100 00000000 ^ 01111000 01101111 01110010 00000000 = 00011001 00001011 00010110 00000000 => 01101101 (0x6d) crc(a) ^ crc(b): = 01100001 01100100 01100100 00000000 => 00110100 (0x34) ^ 01111000 01101111 01110010 00000000 => ^ 01011001 (0x59) = 01101101 (0x6d)
And we can quickly test the affect of every possible bit-flip by shifting a single register per simulated bit-flip and xoring it into our original CRC:
fancy brute force search: = 01101000 01101001 01100001 00000000 => 11111100 (0xfc != 0x3b) ^ 00000001 => 11111101 (0xfd != 0x3b) ^ 00000010 => 11111110 (0xfe != 0x3b) ^ 00000100 => 11111000 (0xf8 != 0x3b) ^ 00001000 => 11110100 (0xf4 != 0x3b) ^ 00010000 => 11101100 (0xec != 0x3b) ^ 00100000 => 11011100 (0xdc != 0x3b) ^ 01000000 => 10111100 (0xbc != 0x3b) ^ 10000000 => 01111100 (0x7c != 0x3b) ^ (1)00000111 => 11111011 (0xfb != 0x3b) ^ (1) 00001110 => 11110010 (0xf2 != 0x3b) ^ (1) 00011100 => 11100000 (0xe0 != 0x3b) ^ (1) 00111000 => 11000100 (0xc4 != 0x3b) ^ (1) 01110000 => 10001100 (0x8c != 0x3b) ^ (1) 11100000 => 00011100 (0x1c != 0x3b) ^ (1) 11000111 => 00111011 (0x3b == 0x3b) !!! found our bit-error corrected message: = 01101000 01101001 00100001 00000000 => 00111011 (0x3b == 0x3b)
The end result is still
$O(n^e)$ , but limited only by your CPU's shift, xor, and branching hardware. No memory accesses required.See
ramcrc32bd_read
for an implementation of this.
And some caveats:
-
For any error-correcting code, attempting to correct errors reduces the code's ability to detect errors.
In the HD=4 example, we assumed 1 bit-error. If we were wrong and there were actually 3 bit-errors, we would have "corrected" to the wrong codeword.
In practice this isn't that big of a problem. Fewer bit-errors are usually more common, and correcting bit-errors is usually more useful. At 4 bit-errors you're going to end up with full collisions anyways.
Still, it's good to be aware of this tradeoff.
ramcrc32bd's
error_correction
config option lets you control exactly how many bit-errors to attempt to repair in case better detection is more useful. -
Brute force doesn't really scale.
The error-correction implemented here grows
$O(n^e)$ for$e$ bit-errors, which really isn't great.That being said, larger CRC Hamming distances are also pretty limited in terms of message size, so this performance may be excusable if messages are small and bit-errors are rare.
ramcrc32bd's
error_correction
config option can also help here by limiting how many bit-errors we attempt to repair. If you seterror_correction=1
, for example, the runtime reduces to$O(n)$ worst case, which is roughly the same runtime it takes to read the data from the underlying storage.But if you need a performant error-correcting block device, consider ramcrc32bd's big brother, ramrsbd, which brings the decoding cost down to
$O(ne + e^2)$ .