Skip to content

kk262777/javacv

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

JavaCV

Introduction

JavaCV uses wrappers from the JavaCPP Presets of commonly used libraries by researchers in the field of computer vision (OpenCV, FFmpeg, libdc1394, PGR FlyCapture, OpenKinect, videoInput, and ARToolKitPlus), and provides utility classes to make their functionality easier to use on the Java platform, including Android.

JavaCV also comes with hardware accelerated full-screen image display (CanvasFrame and GLCanvasFrame), easy-to-use methods to execute code in parallel on multiple cores (Parallel), user-friendly geometric and color calibration of cameras and projectors (GeometricCalibrator, ProCamGeometricCalibrator, ProCamColorCalibrator), detection and matching of feature points (ObjectFinder), a set of classes that implement direct image alignment of projector-camera systems (mainly GNImageAligner, ProjectiveTransformer, ProjectiveColorTransformer, ProCamTransformer, and ReflectanceInitializer), a blob analysis package (Blobs), as well as miscellaneous functionality in the JavaCV class. Some of these classes also have an OpenCL and OpenGL counterpart, their names ending with CL or starting with GL, i.e.: JavaCVCL, GLCanvasFrame, etc.

To learn how to use the API, since documentation currently lacks, please refer to the Sample Usage section below as well as the sample programs, including two for Android (FacePreview.java and RecordActivity.java), also found in the samples directory. You may also find it useful to refer to the source code of ProCamCalib and ProCamTracker as well as Examples ported from OpenCV2 Cookbook and the associated Wiki pages.

Please keep me informed of any updates or fixes you make to the code so that I may integrate them into the next release. Thank you! And feel free to ask questions on the mailing list if you encounter any problems with the software! I am sure it is far from perfect...

Downloads

To install manually the JAR files, obtain the following archives and follow the instructions in the Manual Installation section below.

The binary archive contains builds for Linux, Mac OS X, Windows, and Android. The JAR files for specific child modules or platforms can also be obtained individually from the Maven Central Repository.

We can also have everything downloaded and installed automatically with:

  • Maven (inside the pom.xml file)
  <dependency>
    <groupId>org.bytedeco</groupId>
    <artifactId>javacv</artifactId>
    <version>0.9</version>
  </dependency>
  • Gradle (inside the build.gradle file)
  dependencies {
    compile group: 'org.bytedeco', name: 'javacv', version: '0.9'
  }
  • SBT (inside the build.sbt file)
  libraryDependencies += "org.bytedeco" % "javacv" % "0.9"

Additionally, we need to either set the platform.dependency system property (via the -D command line option) to something like android-arm, or set the platform.dependencies one to true to get all the binaries for Linux, Mac OS X, and Windows.

Required Software

To use JavaCV, you will first need to download and install the following software:

Further, although not always required, some functionality of JavaCV also relies on:

Finally, please make sure everything has the same bitness: 32-bit and 64-bit modules do not mix under any circumstances.

Build Instructions

To rebuild the source code, please note that the project files were created for:

Once installed, simply call the usual mvn install command for JavaCPP, its Presets, and JavaCV. By default, all the dependencies listed above are NOT required, except for OpenCV and a C++ compiler for JavaCPP. Please refer to the comments inside the pom.xml files for further details.

Manual Installation for OpenCV and FFmpeg

Simply put all the JAR files of JavaCPP, JavaCV, OpenCV, and FFmpeg (javacpp.jar, javacv.jar, opencv-*.jar, and ffmpeg-*.jar, respectively) somewhere in your CLASSPATH. Here are some more specific instructions for common cases:

NetBeans (Java SE 6 or newer):

  1. In the Projects window, right-click the Libraries node of your project, and select "Add JAR/Folder...".
  2. Locate the JAR files, select them, and click OK.

Eclipse (Java SE 6 or newer):

  1. Navigate to Project > Properties > Java Build Path > Libraries and click "Add External JARs...".
  2. Locate the JAR files, select them, and click OK.

Eclipse (Android 2.2 or newer):

  1. Follow the instructions on this page: http://developer.android.com/training/basics/firstapp/
  2. Go to File > New > Folder, select your project as parent folder, type "libs/armeabi" as Folder name, and click Finish.
  3. Copy javacpp.jar, javacv.jar, opencv.jar, and ffmpeg.jar into the newly created "libs" folder.
  4. Extract all the *.so files from opencv-android-arm.jar and ffmpeg-android-arm.jar directly into the newly created "libs/armeabi" folder, without creating any of the subdirectories found in the JAR files.
  5. Navigate to Project > Properties > Java Build Path > Libraries and click "Add JARs...".
  6. Select all of javacpp.jar, javacv.jar, opencv.jar, and ffmpeg.jar from the newly created "libs" folder.

After that, the wrapper classes for OpenCV and FFmpeg can automatically access all of their C/C++ APIs:

Sample Usage

The class definitions are basically ports to Java of the original header files in C/C++, and I deliberately decided to keep as much of the original syntax as possible. For example, here is a method that tries to load an image file, smooth it, and save it back to disk:

import static org.bytedeco.javacpp.opencv_core.*;
import static org.bytedeco.javacpp.opencv_imgproc.*;
import static org.bytedeco.javacpp.opencv_highgui.*;

public class Smoother {
    public static void smooth(String filename) { 
        IplImage image = cvLoadImage(filename);
        if (image != null) {
            cvSmooth(image, image);
            cvSaveImage(filename, image);
            cvReleaseImage(image);
        }
    }
}

JavaCV also comes with helper classes and methods on top of OpenCV and FFmpeg to facilitate their integration to the Java platform. Here is a small demo program demonstrating the most frequently useful parts:

import java.io.File;
import java.net.URL;
import org.bytedeco.javacv.*;
import org.bytedeco.javacpp.*;
import static org.bytedeco.javacpp.opencv_core.*;
import static org.bytedeco.javacpp.opencv_imgproc.*;
import static org.bytedeco.javacpp.opencv_calib3d.*;
import static org.bytedeco.javacpp.opencv_objdetect.*;

public class Demo {
    public static void main(String[] args) throws Exception {
        String classifierName = null;
        if (args.length > 0) {
            classifierName = args[0];
        } else {
            URL url = new URL("https://raw.github.com/Itseez/opencv/2.4/data/haarcascades/haarcascade_frontalface_alt.xml");
            File file = Loader.extractResource(url, null, "classifier", ".xml");
            file.deleteOnExit();
            classifierName = file.getAbsolutePath();
        }

        // Preload the opencv_objdetect module to work around a known bug.
        Loader.load(opencv_objdetect.class);

        // We can "cast" Pointer objects by instantiating a new object of the desired class.
        CvHaarClassifierCascade classifier = new CvHaarClassifierCascade(cvLoad(classifierName));
        if (classifier.isNull()) {
            System.err.println("Error loading classifier file \"" + classifierName + "\".");
            System.exit(1);
        }

        // The available FrameGrabber classes include OpenCVFrameGrabber (opencv_highgui),
        // DC1394FrameGrabber, FlyCaptureFrameGrabber, OpenKinectFrameGrabber,
        // PS3EyeFrameGrabber, VideoInputFrameGrabber, and FFmpegFrameGrabber.
        FrameGrabber grabber = FrameGrabber.createDefault(0);
        grabber.start();

        // FAQ about IplImage:
        // - For custom raw processing of data, getByteBuffer() returns an NIO direct
        //   buffer wrapped around the memory pointed by imageData, and under Android we can
        //   also use that Buffer with Bitmap.copyPixelsFromBuffer() and copyPixelsToBuffer().
        // - To get a BufferedImage from an IplImage, we may call getBufferedImage().
        // - The createFrom() factory method can construct an IplImage from a BufferedImage.
        // - There are also a few copy*() methods for BufferedImage<->IplImage data transfers.
        IplImage grabbedImage = grabber.grab();
        int width  = grabbedImage.width();
        int height = grabbedImage.height();
        IplImage grayImage    = IplImage.create(width, height, IPL_DEPTH_8U, 1);
        IplImage rotatedImage = grabbedImage.clone();

        // Objects allocated with a create*() or clone() factory method are automatically released
        // by the garbage collector, but may still be explicitly released by calling release().
        // You shall NOT call cvReleaseImage(), cvReleaseMemStorage(), etc. on objects allocated this way.
        CvMemStorage storage = CvMemStorage.create();

        // The OpenCVFrameRecorder class simply uses the CvVideoWriter of opencv_highgui,
        // but FFmpegFrameRecorder also exists as a more versatile alternative.
        FrameRecorder recorder = FrameRecorder.createDefault("output.avi", width, height);
        recorder.start();

        // CanvasFrame is a JFrame containing a Canvas component, which is hardware accelerated.
        // It can also switch into full-screen mode when called with a screenNumber.
        // We should also specify the relative monitor/camera response for proper gamma correction.
        CanvasFrame frame = new CanvasFrame("Some Title", CanvasFrame.getDefaultGamma()/grabber.getGamma());

        // Let's create some random 3D rotation...
        CvMat randomR = CvMat.create(3, 3), randomAxis = CvMat.create(3, 1);
        // We can easily and efficiently access the elements of CvMat objects
        // with the set of get() and put() methods.
        randomAxis.put((Math.random()-0.5)/4, (Math.random()-0.5)/4, (Math.random()-0.5)/4);
        cvRodrigues2(randomAxis, randomR, null);
        double f = (width + height)/2.0;        randomR.put(0, 2, randomR.get(0, 2)*f);
                                                randomR.put(1, 2, randomR.get(1, 2)*f);
        randomR.put(2, 0, randomR.get(2, 0)/f); randomR.put(2, 1, randomR.get(2, 1)/f);
        System.out.println(randomR);

        // We can allocate native arrays using constructors taking an integer as argument.
        CvPoint hatPoints = new CvPoint(3);

        while (frame.isVisible() && (grabbedImage = grabber.grab()) != null) {
            cvClearMemStorage(storage);

            // Let's try to detect some faces! but we need a grayscale image...
            cvCvtColor(grabbedImage, grayImage, CV_BGR2GRAY);
            CvSeq faces = cvHaarDetectObjects(grayImage, classifier, storage,
                    1.1, 3, CV_HAAR_DO_CANNY_PRUNING);
            int total = faces.total();
            for (int i = 0; i < total; i++) {
                CvRect r = new CvRect(cvGetSeqElem(faces, i));
                int x = r.x(), y = r.y(), w = r.width(), h = r.height();
                cvRectangle(grabbedImage, cvPoint(x, y), cvPoint(x+w, y+h), CvScalar.RED, 1, CV_AA, 0);

                // To access or pass as argument the elements of a native array, call position() before.
                hatPoints.position(0).x(x-w/10)   .y(y-h/10);
                hatPoints.position(1).x(x+w*11/10).y(y-h/10);
                hatPoints.position(2).x(x+w/2)    .y(y-h/2);
                cvFillConvexPoly(grabbedImage, hatPoints.position(0), 3, CvScalar.GREEN, CV_AA, 0);
            }

            // Let's find some contours! but first some thresholding...
            cvThreshold(grayImage, grayImage, 64, 255, CV_THRESH_BINARY);

            // To check if an output argument is null we may call either isNull() or equals(null).
            CvSeq contour = new CvSeq(null);
            cvFindContours(grayImage, storage, contour, Loader.sizeof(CvContour.class),
                    CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
            while (contour != null && !contour.isNull()) {
                if (contour.elem_size() > 0) {
                    CvSeq points = cvApproxPoly(contour, Loader.sizeof(CvContour.class),
                            storage, CV_POLY_APPROX_DP, cvContourPerimeter(contour)*0.02, 0);
                    cvDrawContours(grabbedImage, points, CvScalar.BLUE, CvScalar.BLUE, -1, 1, CV_AA);
                }
                contour = contour.h_next();
            }

            cvWarpPerspective(grabbedImage, rotatedImage, randomR);

            frame.showImage(rotatedImage);
            recorder.record(rotatedImage);
        }
        frame.dispose();
        recorder.stop();
        grabber.stop();
    }
}

Project lead: Samuel Audet [samuel.audet at gmail.com](mailto:samuel.audet at gmail.com)
Developer site: https://github.com/bytedeco/javacv
Discussion group: http://groups.google.com/group/javacv

Licensed under the GNU General Public License version 2 (GPLv2) with Classpath exception.
Please refer to LICENSE.txt or http://www.gnu.org/software/classpath/license.html for details.

About

Java interface to OpenCV and more

Resources

License

Stars

Watchers

Forks

Packages

No packages published