Install Docker.
$ git clone https://github.com/VladimirKalajcidi/Speech-Features.git
$ cd endtoend
$ docker build -t stt .
Execute following command in Speech-Features
directory.
$ docker run -it -d -v $(pwd):/app/ --net host --name stt stt
$ docker exec -it stt bash
root@hostname:/workspace# ./scripts/installation.sh
root@hostname:/workspace# python app.py -i audio.mp3 -o output.json -m base -t token
Arguments for app.py
:
- i: input .mp3 file
- o: ouput .json file
- m: model path, defalut = "base", custom = "username/repo"
- t: huggingface token ("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")
Execute following command in Speech-Features
directory.
$ docker run -it -d -v $(pwd):/app/ --net host --name stt stt
$ docker exec -it stt bash
root@hostname:/workspace# ./scripts/installation.sh
root@hostname:/workspace# dvc repro
Execute following command in Speech-Features
directory.
$ docker run -it -d -v $(pwd):/app/ --net host --name stt stt
$ docker exec -it stt bash
root@hostname:/workspace# ./scripts/installation.sh
root@hostname:/workspace# ./scripts/convert.sh artifacts/training/model whisper-ct2 username/repo
Arguments for convert.sh
:
1: path to trained model
2: path to converted model in local repository
3: path to HuggingFace repository