Skip to content

Commit

Permalink
UDEs working with experiment with different MB (#122)
Browse files Browse the repository at this point in the history
Fixed a few bugs in the UDE workflow. The UDEs work suprisingly well with a different MB model. This means that using surface velocities is really a well proxy, which is robust to changes in surface elevation.
  • Loading branch information
JordiBolibar authored Jun 13, 2023
1 parent 8e53f83 commit 7a73ea2
Show file tree
Hide file tree
Showing 16 changed files with 34 additions and 60 deletions.
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ version = "0.1.0"
AbbreviatedStackTraces = "ac637c84-cc71-43bf-9c33-c1b4316be3d4"
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
CairoMakie = "13f3f980-e62b-5c42-98c6-ff1f3baf88f0"
ChainRules = "082447d4-558c-5d27-93f4-14fc19e9eca2"
Dates = "ade2ca70-3891-5945-98fb-dc099432e06a"
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
Expand Down Expand Up @@ -38,7 +39,6 @@ SnoopPrecompile = "66db9d55-30c0-4569-8b51-7e840670fc0c"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
TimerOutputs = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
Tullio = "bc48ee85-29a4-5162-ae0b-a64e1601d4bc"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
AbbreviatedStackTraces = "0.1.7"
Expand Down Expand Up @@ -66,10 +66,10 @@ PyCall = "1.9"
PyPlot = "2.11"
Revise = "3.1"
SciMLSensitivity = "7.20"
ChainRules = "1.50"
SnoopPrecompile = "1.0.3"
TimerOutputs = "0.5.22"
Tullio = "0.3"
Zygote = "0.6"
julia = "1.7"

[extras]
Expand Down
Binary file removed data/gdir_refs.jld2
Binary file not shown.
Binary file added data/gdir_refs_(2010.0, 2015.0).jld2
Binary file not shown.
Binary file added data/gdir_refs_(2010.0, 2015.0)_MB1.jld2
Binary file not shown.
Binary file added data/gdir_refs_(2010.0, 2015.0)_MB2.jld2
Binary file not shown.
Binary file added data/gdir_refs_(2010.0, 2015.0)_MB3.jld2
Binary file not shown.
42 changes: 7 additions & 35 deletions scripts/dhdt_plots.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,15 +8,17 @@ import ODINN: fillZeros
function make_plots()

# plot_type = "only_H" # plot final H
# plot_type = "MB_diff" # differences between runs with different MB models
plot_type = "H_diff" # H - H₀
plot_type = "MB_diff" # differences between runs with different MB models
# plot_type = "H_diff" # H - H₀
tspan = (2010.0, 2015.0) # period in years for simulation

root_dir = dirname(Base.current_project())

# Load forward simulations with different surface MB
grefs = load(joinpath(root_dir, "data/gdir_refs_$tspan.jld2"))["gdir_refs"]
grefs_MBu1 = load(joinpath(root_dir, "data/gdir_refs_updatedMB1.jld2"))["gdir_refs"]
grefs_MBu1 = load(joinpath(root_dir, "data/gdir_refs_$(tspan)_MB1.jld2"))["gdir_refs"]
grefs_MBu2 = load(joinpath(root_dir, "data/gdir_refs_$(tspan)_MB2.jld2"))["gdir_refs"]
grefs_MBu3 = load(joinpath(root_dir, "data/gdir_refs_$(tspan)_MB3.jld2"))["gdir_refs"]

n=4
m=3
Expand All @@ -33,16 +35,15 @@ function make_plots()
H = reverse(grefs[i]["H"]', dims=2)
H₀ = reverse(grefs[i]["H₀"]', dims=2)
H_MBu1 = reverse(grefs_MBu1[i]["H"]', dims=2)
# H = reverse(grefs[i]["H"])
# H_MBu1 = reverse(grefs_MBu1[i]["H"])
H_MBu2 = reverse(grefs_MBu3[i]["H"]', dims=2)
if plot_type == "only_H"
H_plot = H
label = "Predicted H (m)"
elseif plot_type == "H_diff"
H_plot = H .- H₀
label = "H - H₀ (m)"
elseif plot_type == "MB_diff"
H_plot = H .- H_MBu1
H_plot = H_MBu1 .- H_MBu2
label="Surface mass balance difference (m)"
end
push!(MBdiffs, H_plot)
Expand All @@ -66,35 +67,6 @@ function make_plots()

end # let

# hms = []
# for (gref, gref_MBu1) in zip(grefs, grefs_MBu1)
# H = reverse(gref["H"], dims=1)
# H_MBu1 = reverse(gref_MBu1["H"], dims=1)
# # H = gref["H"]
# # H_MBu1 = gref_MBu1["H"]
# push!(hms, heatmap(H .- H_MBu1,
# clims=(0.0,5.0),
# ylimits=(0, size(H)[1]),
# xlimits=(0, size(H)[2]),
# colorbar = false)
# )
# end

# h2 = scatter([0,0], [0,1], clims=(0.0,5.0),
# xlims=(1,1.1), xshowaxis=false, yshowaxis=false, label="", colorbar_title="cbar", grid=false)


# l = @layout [grid(6,5) a{0.01w}]

# # Create the combined plot with the subplots and shared colormap
# p_dhdt = plot(hms..., h2,
# size=(1800, 1200),
# layout=l,
# link=:all,
# aspect_ratio=:equal)

# savefig(p_dhdt, joinpath(root_dir, "plots/MB/dhdt_MB_1"))

end

make_plots()
12 changes: 6 additions & 6 deletions scripts/toy_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ ENV["GKSwstype"]="nul"

function run_toy_model()

processes = 1
processes = 18

# Enable multiprocessing
ODINN.enable_multiprocessing(processes)
Expand All @@ -35,9 +35,9 @@ function run_toy_model()
ODINN.set_run_spinup(false) # Run the spin-up random_MB = generate_random_MB(gdirs_climate, tspan; plot=false)n
ODINN.set_use_spinup(false) # Use the updated spinup
# Reference simulations
ODINN.set_create_ref_dataset(true) # Generate reference data for UDE training
ODINN.set_create_ref_dataset(false) # Generate reference data for UDE training
# UDE training
ODINN.set_train(false) # Train UDE
ODINN.set_train(true) # Train UDE
ODINN.set_retrain(false) # Re-use previous NN weights to continue training
# Optimization method for differentiating the model
ODINN.set_optimization_method("AD+AD")
Expand Down Expand Up @@ -69,7 +69,7 @@ function run_toy_model()
if ODINN.create_ref_dataset[]
println("Generating reference dataset for training...")
# Compute reference dataset in parallel
mb_model = ODINN.TI_model_1(DDF=8.0/1000.0, acc_factor=1.0/1000.0) # in m.w.e.
mb_model = ODINN.TI_model_1(DDF=4.0/1000.0, acc_factor=2.0/1000.0) # in m.w.e.
gdir_refs = @time "PDEs" generate_ref_dataset(gdirs, tspan, solver=RDPK3Sp35(), mb_model)

println("Saving reference data")
Expand All @@ -89,7 +89,7 @@ function run_toy_model()
if ODINN.train[]
# Train iceflow UDE in parallel
n_ADAM = 20
n_BFGS = 100
n_BFGS = 50
batch_size = length(gdir_refs)
# batch_size = 9
UDE_settings = Dict("reltol"=>1e-7,
Expand All @@ -103,7 +103,7 @@ function run_toy_model()
# optimizer = BFGS(initial_stepnorm=0.0001)
optimizer = Adam(0.001)
train_settings = (optimizer, n_ADAM, batch_size) # optimizer, epochs, batch_size
mb_model = ODINN.TI_model_1(DDF=6.0/1000.0, acc_factor=1.0/1000.0) # in m.w.e.
mb_model = ODINN.TI_model_1(DDF=8.0/1000.0, acc_factor=1.0/1000.0) # in m.w.e.
iceflow_trained, UA_f, loss_history = @time "UDEs" train_iceflow_UDE(gdirs, gdir_refs,
tspan, train_settings, θ_trained;
UDE_settings=UDE_settings,
Expand Down
2 changes: 1 addition & 1 deletion src/ODINN.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ using SciMLSensitivity
using Optimization, Optim, OptimizationOptimJL
import OptimizationOptimisers.Adam
using IterTools: ncycle
using Zygote: @ignore
using ChainRules: @ignore_derivatives
using Base: @kwdef
using Flux
using Tullio
Expand Down
4 changes: 2 additions & 2 deletions src/helpers/climate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ function trim_period(period, climate)
return period
end

function partial_year(period::Type{<:Period}, float::AbstractFloat)
function partial_year(period::Type{<:Period}, float)
_year, Δ = divrem(float, 1)
year_start = Date(_year)
year = period((year_start + Year(1)) - year_start)
Expand All @@ -172,7 +172,7 @@ partial_year(float::AbstractFloat) = partial_year(Day, float)

function get_longterm_temps(gdir::PyObject, tspan)
climate = xr.open_dataset(joinpath(gdir.dir, "raw_climate_$tspan.nc")) # load only once at the beginning
dem = xr.open_rasterio(gdir.get_filepath("dem"))
dem = rioxarray.open_rasterio(gdir.get_filepath("dem"))
apply_t_grad!(climate, dem)
longterm_temps = climate.groupby("time.year").mean().temp.data
return longterm_temps
Expand Down
18 changes: 9 additions & 9 deletions src/helpers/iceflow.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ function generate_ref_dataset(gdirs, tspan, mb_model; solver = RDPK3Sp35(), velo
println("Running forward PDE ice flow model...\n")
# Run batches in parallel
A_noises = randn(rng_seed(), length(gdirs)) .* noise_A_magnitude
refs = @showprogress pmap((gdir, A_noise) -> batch_iceflow_PDE(gdir, A_noise, tspan, solver, mb_model; run_spinup=false, velocities=velocities), gdirs, A_noises)
refs = @showprogress map((gdir, A_noise) -> batch_iceflow_PDE(gdir, A_noise, tspan, solver, mb_model; run_spinup=false, velocities=velocities), gdirs, A_noises)

# Gather information per gdir
gdir_refs = get_gdir_refs(refs, gdirs)
Expand Down Expand Up @@ -359,10 +359,10 @@ function batch_iceflow_UDE(θ, UA_f, context, gdir, UDE_settings, mb_model)
mb_model = TI_model_1(DDF=5.0/1000.0, acc_factor=1.2/1000.0)
end
# Initialize climate dataset
tstops, step = @ignore define_callback_steps(tspan)
tstops, step = @ignore_derivatives define_callback_steps(tspan)
S_coords = context[13]
dist_border = context[17]
climate = @ignore init_climate(gdir, tspan, step, context[9], S_coords)
climate = @ignore_derivatives init_climate(gdir, tspan, step, context[9], S_coords)
# Callback
# Define stop times every one month
stop_condition(u,t,integrator) = stop_condition_tstops(u,t,integrator, tstops) #closure
Expand All @@ -371,7 +371,7 @@ function batch_iceflow_UDE(θ, UA_f, context, gdir, UDE_settings, mb_model)
S::Matrix{Float64} = context[9]
S_coords = context[13]
MB = context[15]
@ignore MB_timestep!(MB, mb_model, climate, S, S_coords, integrator.t, step)
@ignore_derivatives MB_timestep!(MB, mb_model, climate, S, S_coords, integrator.t, step)
apply_MB_mask!(integrator.u, MB, MB_total, dist_border)
end
# Recompute A value
Expand Down Expand Up @@ -401,12 +401,12 @@ function batch_iceflow_UDE(θ, UA_f, context, gdir, UDE_settings, mb_model)
testmode = context[16]
V̄x_pred::Matrix{Float64}, V̄y_pred::Matrix{Float64} = avg_surface_V(context, H_pred, mean(climate.longterm_temps), "UDE", θ, UA_f;
testmode=testmode) # Average velocity with average temperature
rgi_id::String = @ignore gdir.rgi_id
rgi_id::String = @ignore_derivatives gdir.rgi_id
H_V_pred = (H_pred, V̄x_pred, V̄y_pred, rgi_id)

# println("Total MB for $rgi_id: ", sum(MB_total))

@ignore GC.gc() # Run the garbage collector to tame the RAM
@ignore_derivatives GC.gc() # Run the garbage collector to tame the RAM

return H_V_pred
end
Expand All @@ -418,11 +418,11 @@ function batch_iceflow_UDE_inplace(θ, UA_f, gdir, tspan; solver = RDPK3Sp35())
mb_model = TI_model_1(DDF=5.0/1000.0, acc_factor=1.2/1000.0)

# Initialize climate dataset
_, step = @ignore define_callback_steps(tspan)
_, step = @ignore_derivatives define_callback_steps(tspan)
S = context[3]
S_coords = context[32]
dist_border = context[33]
climate = @ignore init_climate(gdir, tspan, step, S, S_coords)
climate = @ignore_derivatives init_climate(gdir, tspan, step, S, S_coords)
# Define stop times every one month
tstops, step = define_callback_steps(tspan)
stop_condition(u,t,integrator) = stop_condition_tstops(u,t,integrator, tstops) #closure
Expand All @@ -432,7 +432,7 @@ function batch_iceflow_UDE_inplace(θ, UA_f, gdir, tspan; solver = RDPK3Sp35())
MB = context[25]
S = context[3]
S_coords = context[32]
MB_timestep!(MB, mb_model, climate, S, S_coords, integrator.t, step)
@ignore_derivatives MB_timestep!(MB, mb_model, climate, S, S_coords, integrator.t, step)
apply_MB_mask!(integrator.u, MB, MB_total, context)
end
# Recompute A value
Expand Down
2 changes: 1 addition & 1 deletion src/helpers/initial_conditions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ function build_UDE_context_inv(gdir, gdir_ref, tspan; run_spinup=false)
# Get evolved tickness and surface
H = gdir_ref["H"]

@ignore begin
@ignore_derivatives begin
glacier_gd = xr.open_dataset(gdir.get_filepath("gridded_data"))
H₁ = glacier_gd.consensus_ice_thickness.data
fillNaN!(H₀) # Fill NaNs with 0s to have real boundary conditions
Expand Down
2 changes: 1 addition & 1 deletion src/helpers/inversions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,7 @@ function loss_iceflow_inversion(θ, UD, gdirs_climate, gdir_refs, context_batche
# l_V = (l_Vx + l_Vy)/2

# Plot V diffs to understand training
@ignore begin
@ignore_derivatives begin
plot_V_diffs(gdirs_climate, gdir_refs, V_preds)
end

Expand Down
4 changes: 3 additions & 1 deletion src/helpers/oggm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,10 @@ function oggm_config(working_dir=joinpath(homedir(), "Python/OGGM_data"); oggm_p

# Multiprocessing
multiprocessing = $oggm_processes > 1 ? true : false
PARAMS["mp_processes"] = $oggm_processes
PARAMS["use_multiprocessing"] = multiprocessing # Let's use multiprocessing for OGGM
if multiprocessing
PARAMS["mp_processes"] = $oggm_processes
end

end # @eval ODINN
end # @everywhere
Expand Down
2 changes: 1 addition & 1 deletion src/helpers/utils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -230,7 +230,7 @@ function get_NN(θ_trained)
Dense(10,3, x->softplus.(x)),
Dense(3,1, sigmoid_A)
)
Flux.f64(UA)
UA = Flux.f64(UA)
# See if parameters need to be retrained or not
θ, UA_f = Flux.destructure(UA)
if !isempty(θ_trained)
Expand Down
2 changes: 1 addition & 1 deletion test/test.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ using Test
# using HDF5
# using JLD2
# using OrdinaryDiffEq, DiffEqFlux
# using Zygote: @ignore
# using Zygote: @ignore_derivatives
# using Flux
# using Tullio, RecursiveArrayTools
# using Infiltrator
Expand Down

0 comments on commit 7a73ea2

Please sign in to comment.