forked from Megvii-BaseDetection/YOLOX
-
Notifications
You must be signed in to change notification settings - Fork 25
/
yolox_voc_s.py
122 lines (104 loc) · 3.79 KB
/
yolox_voc_s.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# encoding: utf-8
import os
import random
import torch
import torch.nn as nn
import torch.distributed as dist
from yolox.exp import Exp as MyExp
from yolox.data import get_yolox_datadir
class Exp(MyExp):
def __init__(self):
super(Exp, self).__init__()
self.num_classes = 20
self.depth = 0.33
self.width = 0.50
self.exp_name = os.path.split(os.path.realpath(__file__))[1].split(".")[0]
def get_data_loader(self, batch_size, is_distributed, no_aug=False):
from yolox.data import (
VOCDetection,
TrainTransform,
YoloBatchSampler,
DataLoader,
InfiniteSampler,
MosaicDetection,
)
dataset = VOCDetection(
data_dir=os.path.join(get_yolox_datadir(), "VOCdevkit"),
image_sets=[('2007', 'trainval'), ('2012', 'trainval')],
img_size=self.input_size,
preproc=TrainTransform(
rgb_means=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
max_labels=50,
),
)
dataset = MosaicDetection(
dataset,
mosaic=not no_aug,
img_size=self.input_size,
preproc=TrainTransform(
rgb_means=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
max_labels=120,
),
degrees=self.degrees,
translate=self.translate,
scale=self.scale,
shear=self.shear,
perspective=self.perspective,
enable_mixup=self.enable_mixup,
)
self.dataset = dataset
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = InfiniteSampler(
len(self.dataset), seed=self.seed if self.seed else 0
)
batch_sampler = YoloBatchSampler(
sampler=sampler,
batch_size=batch_size,
drop_last=False,
input_dimension=self.input_size,
mosaic=not no_aug,
)
dataloader_kwargs = {"num_workers": self.data_num_workers, "pin_memory": True}
dataloader_kwargs["batch_sampler"] = batch_sampler
train_loader = DataLoader(self.dataset, **dataloader_kwargs)
return train_loader
def get_eval_loader(self, batch_size, is_distributed, testdev=False):
from yolox.data import VOCDetection, ValTransform
valdataset = VOCDetection(
data_dir=os.path.join(get_yolox_datadir(), "VOCdevkit"),
image_sets=[('2007', 'test')],
img_size=self.test_size,
preproc=ValTransform(
rgb_means=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
),
)
if is_distributed:
batch_size = batch_size // dist.get_world_size()
sampler = torch.utils.data.distributed.DistributedSampler(
valdataset, shuffle=False
)
else:
sampler = torch.utils.data.SequentialSampler(valdataset)
dataloader_kwargs = {
"num_workers": self.data_num_workers,
"pin_memory": True,
"sampler": sampler,
}
dataloader_kwargs["batch_size"] = batch_size
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
return val_loader
def get_evaluator(self, batch_size, is_distributed, testdev=False):
from yolox.evaluators import VOCEvaluator
val_loader = self.get_eval_loader(batch_size, is_distributed, testdev=testdev)
evaluator = VOCEvaluator(
dataloader=val_loader,
img_size=self.test_size,
confthre=self.test_conf,
nmsthre=self.nmsthre,
num_classes=self.num_classes,
)
return evaluator