-
Notifications
You must be signed in to change notification settings - Fork 4
/
spams_wrap.py
554 lines (506 loc) · 21.7 KB
/
spams_wrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 1.3.40
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
# This file is compatible with both classic and new-style classes.
"""
This module gives access to some functions of the spams C++ library.
The functions defined here should not be called directly.
Use of spams functions should only be done through module spams.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_spams_wrap', [dirname(__file__)])
except ImportError:
import _spams_wrap
return _spams_wrap
if fp is not None:
try:
_mod = imp.load_module('_spams_wrap', fp, pathname, description)
finally:
fp.close()
return _mod
_spams_wrap = swig_import_helper()
del swig_import_helper
else:
import _spams_wrap
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static) or hasattr(self,name):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
def m_ones(*args):
return _spams_wrap.m_ones(*args)
m_ones = _spams_wrap.m_ones
def skip_space(*args):
return _spams_wrap.skip_space(*args)
skip_space = _spams_wrap.skip_space
def parse_line(*args):
return _spams_wrap.parse_line(*args)
parse_line = _spams_wrap.parse_line
def intlist(*args):
return _spams_wrap.intlist(*args)
intlist = _spams_wrap.intlist
L1COEFFS = _spams_wrap.L1COEFFS
L2ERROR = _spams_wrap.L2ERROR
PENALTY = _spams_wrap.PENALTY
SPARSITY = _spams_wrap.SPARSITY
L2ERROR2 = _spams_wrap.L2ERROR2
PENALTY2 = _spams_wrap.PENALTY2
FISTAMODE = _spams_wrap.FISTAMODE
L2 = _spams_wrap.L2
L1L2 = _spams_wrap.L1L2
L1L2FL = _spams_wrap.L1L2FL
L1L2MU = _spams_wrap.L1L2MU
def simpleGroupTree(*args):
"""simpleGroupTree(int degr) -> std::vector<(p.StructNodeElem<(double)>)>"""
return _spams_wrap.simpleGroupTree(*args)
def readGroupStruct(*args):
"""readGroupStruct(char file) -> std::vector<(p.StructNodeElem<(double)>)>"""
return _spams_wrap.readGroupStruct(*args)
def groupStructOfString(*args):
"""groupStructOfString(char data) -> std::vector<(p.StructNodeElem<(double)>)>"""
return _spams_wrap.groupStructOfString(*args)
def sort(*args):
"""
sort(Vector<(double)> v, bool mode)
sort(Vector<(float)> v, bool mode)
"""
return _spams_wrap.sort(*args)
def mult(*args):
"""
mult(Matrix<(double)> X, Matrix<(double)> Y, Matrix<(double)> XY,
bool transX, bool transY, double a,
double b)
mult(Matrix<(float)> X, Matrix<(float)> Y, Matrix<(float)> XY,
bool transX, bool transY, float a, float b)
"""
return _spams_wrap.mult(*args)
def AAt(*args):
"""
AAt(SpMatrix<(double)> A, Matrix<(double)> B)
AAt(SpMatrix<(float)> A, Matrix<(float)> B)
"""
return _spams_wrap.AAt(*args)
def XAt(*args):
"""
XAt(SpMatrix<(double)> A, Matrix<(double)> X, Matrix<(double)> XAt)
XAt(SpMatrix<(float)> A, Matrix<(float)> X, Matrix<(float)> XAt)
"""
return _spams_wrap.XAt(*args)
def applyBayerPattern(*args):
"""
applyBayerPattern(Vector<(double)> v, int offset)
applyBayerPattern(Vector<(float)> v, int offset)
"""
return _spams_wrap.applyBayerPattern(*args)
def conjugateGradient(*args):
"""
conjugateGradient(Matrix<(double)> A, Vector<(double)> b, Vector<(double)> x,
double tol, int itermax)
conjugateGradient(Matrix<(float)> A, Vector<(float)> b, Vector<(float)> x,
float tol, int itermax)
"""
return _spams_wrap.conjugateGradient(*args)
def invSym(*args):
"""
invSym(Matrix<(double)> A)
invSym(Matrix<(float)> A)
"""
return _spams_wrap.invSym(*args)
def normalize(*args):
"""
normalize(Matrix<(double)> A)
normalize(Matrix<(float)> A)
"""
return _spams_wrap.normalize(*args)
def sparseProject(*args):
"""
sparseProject(Matrix<(double)> U, Matrix<(double)> V, double thrs,
int mode, double lambda1, double lambda2, double lambda3,
bool pos, int numThreads)
sparseProject(Matrix<(float)> U, Matrix<(float)> V, float thrs, int mode,
float lambda1, float lambda2, float lambda3,
bool pos, int numThreads)
"""
return _spams_wrap.sparseProject(*args)
def lassoD(*args):
"""
lassoD(Matrix<(double)> X, Matrix<(double)> D, bool return_reg_path,
int L, double constraint, double lambda2,
constraint_type mode, bool pos, bool ols,
int numThreads, int max_length_path, bool verbose,
bool cholevsky) -> SpMatrix<(double)>
lassoD(Matrix<(float)> X, Matrix<(float)> D, bool return_reg_path,
int L, float constraint, float lambda2,
constraint_type mode, bool pos, bool ols,
int numThreads, int max_length_path, bool verbose,
bool cholevsky) -> SpMatrix<(float)>
"""
return _spams_wrap.lassoD(*args)
def lassoQq(*args):
"""
lassoQq(Matrix<(double)> X, Matrix<(double)> Q, Matrix<(double)> q,
bool return_reg_path, int L, double constraint,
double lambda2, constraint_type mode,
bool pos, bool ols, int numThreads, int max_length_path,
bool verbose, bool cholevsky) -> SpMatrix<(double)>
lassoQq(Matrix<(float)> X, Matrix<(float)> Q, Matrix<(float)> q,
bool return_reg_path, int L, float constraint,
float lambda2, constraint_type mode,
bool pos, bool ols, int numThreads, int max_length_path,
bool verbose, bool cholevsky) -> SpMatrix<(float)>
"""
return _spams_wrap.lassoQq(*args)
def lassoMask(*args):
"""
lassoMask(Matrix<(double)> X, Matrix<(double)> D, Matrix<(bool)> B,
int L, double constraint, double lambda2,
constraint_type mode, bool pos, int numThreads,
bool verbose) -> SpMatrix<(double)>
lassoMask(Matrix<(float)> X, Matrix<(float)> D, Matrix<(bool)> B,
int L, float constraint, float lambda2,
constraint_type mode, bool pos, int numThreads,
bool verbose) -> SpMatrix<(float)>
"""
return _spams_wrap.lassoMask(*args)
def lassoWeighted(*args):
"""
lassoWeighted(Matrix<(double)> X, Matrix<(double)> D, Matrix<(double)> W,
int L, double constraint, constraint_type mode,
bool pos, int numThreads, bool verbose) -> SpMatrix<(double)>
lassoWeighted(Matrix<(float)> X, Matrix<(float)> D, Matrix<(float)> W,
int L, float constraint, constraint_type mode,
bool pos, int numThreads, bool verbose) -> SpMatrix<(float)>
"""
return _spams_wrap.lassoWeighted(*args)
def omp(*args):
"""
omp(Matrix<(double)> X, Matrix<(double)> D, bool return_reg_path,
bool given_L, Vector<(int)> L, bool given_eps,
Vector<(double)> eps, bool given_Lambda,
Vector<(double)> Lambda, int numThreads) -> SpMatrix<(double)>
omp(Matrix<(float)> X, Matrix<(float)> D, bool return_reg_path,
bool given_L, Vector<(int)> L, bool given_eps,
Vector<(float)> eps, bool given_Lambda,
Vector<(float)> Lambda, int numThreads) -> SpMatrix<(float)>
"""
return _spams_wrap.omp(*args)
def ompMask(*args):
"""
ompMask(Matrix<(double)> X, Matrix<(double)> D, Matrix<(bool)> B,
bool return_reg_path, bool given_L, Vector<(int)> L,
bool given_eps, Vector<(double)> eps,
bool given_Lambda, Vector<(double)> Lambda,
int numThreads) -> SpMatrix<(double)>
ompMask(Matrix<(float)> X, Matrix<(float)> D, Matrix<(bool)> B,
bool return_reg_path, bool given_L, Vector<(int)> L,
bool given_eps, Vector<(float)> eps,
bool given_Lambda, Vector<(float)> Lambda,
int numThreads) -> SpMatrix<(float)>
"""
return _spams_wrap.ompMask(*args)
def somp(*args):
"""
somp(Matrix<(double)> X, Matrix<(double)> D, Vector<(int)> groups,
int LL, double eps, int numThreads) -> SpMatrix<(double)>
somp(Matrix<(float)> X, Matrix<(float)> D, Vector<(int)> groups,
int LL, float eps, int numThreads) -> SpMatrix<(float)>
"""
return _spams_wrap.somp(*args)
def cd(*args):
"""
cd(Matrix<(double)> X, Matrix<(double)> D, SpMatrix<(double)> alpha,
double lambda1, constraint_type mode,
int itermax, double tol, int numThreads) -> SpMatrix<(double)>
cd(Matrix<(float)> X, Matrix<(float)> D, SpMatrix<(float)> alpha,
float lambda1, constraint_type mode,
int itermax, float tol, int numThreads) -> SpMatrix<(float)>
"""
return _spams_wrap.cd(*args)
def l1L2BCD(*args):
"""
l1L2BCD(Matrix<(double)> X, Matrix<(double)> D, Matrix<(double)> alpha0,
Vector<(int)> groups, double lambda1,
constraint_type mode, int itermax, double tol,
int numThreads)
l1L2BCD(Matrix<(float)> X, Matrix<(float)> D, Matrix<(float)> alpha0,
Vector<(int)> groups, float lambda1,
constraint_type mode, int itermax, float tol,
int numThreads)
"""
return _spams_wrap.l1L2BCD(*args)
def alltrainDL(*args):
"""
alltrainDL(Data<(double)> X, bool in_memory, bool return_model,
Matrix<(double)> m_A, Matrix<(double)> m_B,
int m_iter, Matrix<(double)> D1, Vector<(double)> eta_g,
SpMatrix<(bool)> groups, SpMatrix<(bool)> groups_var,
Vector<(int)> own_variables,
Vector<(int)> N_own_variables, int num_threads,
double tol, bool fixed_step, bool ista,
int batch_size, int K, double lambda1, double lambda2,
double lambda3, int iter, double t0,
constraint_type mode, char name_regul,
bool posAlpha, bool posD, bool expand, constraint_type_D modeD,
bool whiten, bool clean, bool verbose,
double gamma1, double gamma2, double rho,
int iter_updateD, bool stochastic,
int modeParam, bool batch, bool log, char logName) -> Matrix<(double)>
alltrainDL(Data<(float)> X, bool in_memory, bool return_model,
Matrix<(float)> m_A, Matrix<(float)> m_B, int m_iter,
Matrix<(float)> D1, Vector<(float)> eta_g,
SpMatrix<(bool)> groups, SpMatrix<(bool)> groups_var,
Vector<(int)> own_variables,
Vector<(int)> N_own_variables, int num_threads,
float tol, bool fixed_step, bool ista, int batch_size,
int K, double lambda1, double lambda2,
double lambda3, int iter, double t0,
constraint_type mode, char name_regul, bool posAlpha,
bool posD, bool expand, constraint_type_D modeD,
bool whiten, bool clean, bool verbose,
double gamma1, double gamma2, float rho,
int iter_updateD, bool stochastic, int modeParam,
bool batch, bool log, char logName) -> Matrix<(float)>
"""
return _spams_wrap.alltrainDL(*args)
def archetypalAnalysis(*args):
"""
archetypalAnalysis(Matrix<(double)> X, int p, bool robust, double epsilon,
bool computeXtX, int stepsFISTA, int stepsAS,
bool randominit, int numThreads) -> Matrix<(double)>
archetypalAnalysis(Matrix<(float)> X, int p, bool robust, float epsilon,
bool computeXtX, int stepsFISTA, int stepsAS,
bool randominit, int numThreads) -> Matrix<(float)>
"""
return _spams_wrap.archetypalAnalysis(*args)
def archetypalAnalysisInit(*args):
"""
archetypalAnalysisInit(Matrix<(double)> X, Matrix<(double)> Z0, bool robust,
double epsilon, bool computeXtX, int stepsFISTA,
int stepsAS, int numThreads) -> Matrix<(double)>
archetypalAnalysisInit(Matrix<(float)> X, Matrix<(float)> Z0, bool robust,
float epsilon, bool computeXtX, int stepsFISTA,
int stepsAS, int numThreads) -> Matrix<(float)>
"""
return _spams_wrap.archetypalAnalysisInit(*args)
def decompSimplex(*args):
"""
decompSimplex(Matrix<(double)> X, Matrix<(double)> Z, bool computeXtX,
int numThreads) -> SpMatrix<(double)>
decompSimplex(Matrix<(float)> X, Matrix<(float)> Z, bool computeXtX,
int numThreads) -> SpMatrix<(float)>
"""
return _spams_wrap.decompSimplex(*args)
def fistaFlat(*args):
"""
fistaFlat(Matrix<(double)> X, AbstractMatrixB<(double)> D, Matrix<(double)> alpha0,
Matrix<(double)> alpha,
Vector<(int)> groups, int num_threads, int max_it,
double L0, bool fixed_step, double gamma,
double _lambda, double delta, double lambda2,
double lambda3, double a, double b, double c,
double tol, int it0, int max_iter_backtracking,
bool compute_gram, bool lin_admm, bool admm,
bool intercept, bool resetflow, char name_regul,
char name_loss, bool verbose, bool pos,
bool clever, bool log, bool ista, bool subgrad,
char logName, bool is_inner_weights,
Vector<(double)> inner_weights, int size_group,
bool sqrt_step, bool transpose, int linesearch_mode) -> Matrix<(double)>
fistaFlat(Matrix<(float)> X, AbstractMatrixB<(float)> D, Matrix<(float)> alpha0,
Matrix<(float)> alpha, Vector<(int)> groups,
int num_threads, int max_it,
float L0, bool fixed_step, float gamma, float _lambda,
float delta, float lambda2, float lambda3,
float a, float b, float c, float tol,
int it0, int max_iter_backtracking, bool compute_gram,
bool lin_admm, bool admm, bool intercept,
bool resetflow, char name_regul,
char name_loss, bool verbose, bool pos, bool clever,
bool log, bool ista, bool subgrad, char logName,
bool is_inner_weights, Vector<(float)> inner_weights,
int size_group, bool sqrt_step,
bool transpose, int linesearch_mode) -> Matrix<(float)>
"""
return _spams_wrap.fistaFlat(*args)
def fistaTree(*args):
"""
fistaTree(Matrix<(double)> X, AbstractMatrixB<(double)> D, Matrix<(double)> alpha0,
Matrix<(double)> alpha,
Vector<(double)> eta_g, SpMatrix<(bool)> groups,
Vector<(int)> own_variables, Vector<(int)> N_own_variables,
int num_threads, int max_it,
double L0, bool fixed_step, double gamma,
double _lambda, double delta, double lambda2,
double lambda3, double a, double b, double c,
double tol, int it0, int max_iter_backtracking,
bool compute_gram, bool lin_admm, bool admm,
bool intercept, bool resetflow, char name_regul,
char name_loss, bool verbose, bool pos,
bool clever, bool log, bool ista, bool subgrad,
char logName, bool is_inner_weights,
Vector<(double)> inner_weights, int size_group,
bool sqrt_step, bool transpose, int linesearch_mode) -> Matrix<(double)>
fistaTree(Matrix<(float)> X, AbstractMatrixB<(float)> D, Matrix<(float)> alpha0,
Matrix<(float)> alpha, Vector<(float)> eta_g,
SpMatrix<(bool)> groups,
Vector<(int)> own_variables, Vector<(int)> N_own_variables,
int num_threads, int max_it,
float L0, bool fixed_step, float gamma, float _lambda,
float delta, float lambda2, float lambda3,
float a, float b, float c, float tol,
int it0, int max_iter_backtracking, bool compute_gram,
bool lin_admm, bool admm, bool intercept,
bool resetflow, char name_regul, char name_loss,
bool verbose, bool pos, bool clever,
bool log, bool ista, bool subgrad, char logName,
bool is_inner_weights, Vector<(float)> inner_weights,
int size_group, bool sqrt_step,
bool transpose, int linesearch_mode) -> Matrix<(float)>
"""
return _spams_wrap.fistaTree(*args)
def fistaGraph(*args):
"""
fistaGraph(Matrix<(double)> X, AbstractMatrixB<(double)> D, Matrix<(double)> alpha0,
Matrix<(double)> alpha,
Vector<(double)> eta_g, SpMatrix<(bool)> groups,
SpMatrix<(bool)> groups_var, int num_threads,
int max_it, double L0, bool fixed_step,
double gamma, double _lambda, double delta,
double lambda2, double lambda3, double a, double b,
double c, double tol, int it0, int max_iter_backtracking,
bool compute_gram, bool lin_admm,
bool admm, bool intercept, bool resetflow,
char name_regul, char name_loss, bool verbose,
bool pos, bool clever, bool log, bool ista,
bool subgrad, char logName, bool is_inner_weights,
Vector<(double)> inner_weights,
int size_group, bool sqrt_step, bool transpose,
int linesearch_mode) -> Matrix<(double)>
fistaGraph(Matrix<(float)> X, AbstractMatrixB<(float)> D, Matrix<(float)> alpha0,
Matrix<(float)> alpha, Vector<(float)> eta_g,
SpMatrix<(bool)> groups,
SpMatrix<(bool)> groups_var, int num_threads,
int max_it, float L0, bool fixed_step, float gamma,
float _lambda, float delta, float lambda2,
float lambda3, float a, float b, float c,
float tol, int it0, int max_iter_backtracking,
bool compute_gram, bool lin_admm, bool admm,
bool intercept, bool resetflow, char name_regul,
char name_loss, bool verbose, bool pos,
bool clever, bool log, bool ista, bool subgrad,
char logName, bool is_inner_weights,
Vector<(float)> inner_weights, int size_group,
bool sqrt_step, bool transpose, int linesearch_mode) -> Matrix<(float)>
"""
return _spams_wrap.fistaGraph(*args)
def proximalFlat(*args):
"""
proximalFlat(Matrix<(double)> alpha0, Matrix<(double)> alpha, Vector<(int)> groups,
int num_threads, double lambda1,
double lambda2, double lambda3, bool intercept,
bool resetflow, char name_regul, bool verbose,
bool pos, bool clever, bool eval,
int size_group, bool transpose) -> Vector<(double)>
proximalFlat(Matrix<(float)> alpha0, Matrix<(float)> alpha, Vector<(int)> groups,
int num_threads, float lambda1,
float lambda2, float lambda3, bool intercept,
bool resetflow, char name_regul, bool verbose,
bool pos, bool clever, bool eval, int size_group,
bool transpose) -> Vector<(float)>
"""
return _spams_wrap.proximalFlat(*args)
def proximalTree(*args):
"""
proximalTree(Matrix<(double)> alpha0, Matrix<(double)> alpha, Vector<(double)> eta_g,
SpMatrix<(bool)> groups,
Vector<(int)> own_variables, Vector<(int)> N_own_variables,
int num_threads, double lambda1,
double lambda2, double lambda3, bool intercept,
bool resetflow, char name_regul, bool verbose,
bool pos, bool clever, bool eval, int size_group,
bool transpose) -> Vector<(double)>
proximalTree(Matrix<(float)> alpha0, Matrix<(float)> alpha, Vector<(float)> eta_g,
SpMatrix<(bool)> groups, Vector<(int)> own_variables,
Vector<(int)> N_own_variables,
int num_threads, float lambda1,
float lambda2, float lambda3, bool intercept,
bool resetflow, char name_regul, bool verbose,
bool pos, bool clever, bool eval, int size_group,
bool transpose) -> Vector<(float)>
"""
return _spams_wrap.proximalTree(*args)
def proximalGraph(*args):
"""
proximalGraph(Matrix<(double)> alpha0, Matrix<(double)> alpha, Vector<(double)> eta_g,
SpMatrix<(bool)> groups,
SpMatrix<(bool)> groups_var, int num_threads,
double lambda1, double lambda2, double lambda3,
bool intercept, bool resetflow, char name_regul,
bool verbose, bool pos, bool clever,
bool eval, int size_group, bool transpose) -> Vector<(double)>
proximalGraph(Matrix<(float)> alpha0, Matrix<(float)> alpha, Vector<(float)> eta_g,
SpMatrix<(bool)> groups, SpMatrix<(bool)> groups_var,
int num_threads,
float lambda1, float lambda2, float lambda3,
bool intercept, bool resetflow, char name_regul,
bool verbose, bool pos, bool clever, bool eval,
int size_group, bool transpose) -> Vector<(float)>
"""
return _spams_wrap.proximalGraph(*args)
def graphOfGroupStruct(*args):
"""
graphOfGroupStruct(std::vector<(p.StructNodeElem<(double)>)> gstruct) -> Vector<(double)>
graphOfGroupStruct(std::vector<(p.StructNodeElem<(float)>)> gstruct) -> Vector<(float)>
"""
return _spams_wrap.graphOfGroupStruct(*args)
def treeOfGroupStruct(*args):
"""
treeOfGroupStruct(std::vector<(p.StructNodeElem<(double)>)> gstruct) -> int
treeOfGroupStruct(std::vector<(p.StructNodeElem<(float)>)> gstruct, Vector<(float)> peta_g) -> int
"""
return _spams_wrap.treeOfGroupStruct(*args)
def im2col_sliding(*args):
"""
im2col_sliding(Matrix<(double)> A, Matrix<(double)> B, int m, int n,
bool RGB)
im2col_sliding(Matrix<(float)> A, Matrix<(float)> B, int m, int n,
bool RGB)
"""
return _spams_wrap.im2col_sliding(*args)