-
Notifications
You must be signed in to change notification settings - Fork 7
/
LlamaChatModel.py
95 lines (68 loc) · 2.64 KB
/
LlamaChatModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain import PromptTemplate
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import CTransformers
from langchain.chains import RetrievalQA
import chainlit as cl
DB_FAISS_PATH = 'vectorstore/db_faiss'
custom_prompt_template = """Use the following pieces of information to answer the user's question.
If you don't know the answer, just say that you don't know.
Context: {context}
Question: {question}
Only return the helpful answer below and nothing else.
Helpful answer:
"""
def SetCustomPrompt():
"""
Prompt template for QA retrieval for each vectorstore
"""
prompt = PromptTemplate(template=custom_prompt_template,
input_variables=['context', 'question'])
return prompt
#Retrieval QA Chain
def RetrievalQAChain(llm, prompt, db):
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=db.as_retriever(search_kwargs={'k': 2}),
return_source_documents=True, chain_type_kwargs={'prompt': prompt})
return qa_chain
def LoadLLM():
llm = CTransformers(
model = "TheBloke/Llama-2-7B-Chat-GGML",
model_type="llama",
max_new_tokens = 512,
temperature = 0.5
)
return llm
def LLamaQABot():
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'})
db = FAISS.load_local(DB_FAISS_PATH,embeddings)
llm = LoadLLM()
qaPropmpt = SetCustomPrompt()
qaBot = RetrievalQAChain(llm,qaPropmpt,db)
return qaBot
def GetAnswer(query):
qaBot = LLamaQABot()
response = qaBot({'query':query})
return response
@cl.on_chat_start
async def Start():
chain=LLamaQABot()
message = cl.Message(content="Starting Medical Chat Bot...")
await message.send()
message.content = "Hi, Welcome to Medical Chat Bot. How may I help you?"
await message.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain")
langchainCallBack = cl.AsyncLangchainCallbackHandler(stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"])
langchainCallBack.answer_reached=True
response = await chain.acall(message, callbacks=[langchainCallBack])
answer = response["result"]
sources = response["source_documents"]
if sources:
answer += f"\nSources:" + str(sources)
else:
answer += "\nNo sources found"
await cl.Message(content=answer).send()