forked from h9-tect/Machine-learning-roadmap-and-projects
-
Notifications
You must be signed in to change notification settings - Fork 0
/
naivebayes.py
67 lines (52 loc) · 2.1 KB
/
naivebayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
class NaiveBayes:
def fit(self, X, y):
n_samples, n_features = X.shape
self._classes = np.unique(y)
n_classes = len(self._classes)
# calculate mean, var, and prior for each class
self._mean = np.zeros((n_classes, n_features), dtype=np.float64)
self._var = np.zeros((n_classes, n_features), dtype=np.float64)
self._priors = np.zeros(n_classes, dtype=np.float64)
for idx, c in enumerate(self._classes):
X_c = X[y == c]
self._mean[idx, :] = X_c.mean(axis=0)
self._var[idx, :] = X_c.var(axis=0)
self._priors[idx] = X_c.shape[0] / float(n_samples)
def predict(self, X):
y_pred = [self._predict(x) for x in X]
return np.array(y_pred)
def _predict(self, x):
posteriors = []
# calculate posterior probability for each class
for idx, c in enumerate(self._classes):
prior = np.log(self._priors[idx])
posterior = np.sum(np.log(self._pdf(idx, x)))
posterior = prior + posterior
posteriors.append(posterior)
# return class with highest posterior probability
return self._classes[np.argmax(posteriors)]
def _pdf(self, class_idx, x):
mean = self._mean[class_idx]
var = self._var[class_idx]
numerator = np.exp(-((x - mean) ** 2) / (2 * var))
denominator = np.sqrt(2 * np.pi * var)
return numerator / denominator
# Testing
if __name__ == "__main__":
# Imports
from sklearn.model_selection import train_test_split
from sklearn import datasets
def accuracy(y_true, y_pred):
accuracy = np.sum(y_true == y_pred) / len(y_true)
return accuracy
X, y = datasets.make_classification(
n_samples=1000, n_features=10, n_classes=2, random_state=123
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=123
)
nb = NaiveBayes()
nb.fit(X_train, y_train)
predictions = nb.predict(X_test)
print("Naive Bayes classification accuracy", accuracy(y_test, predictions))