-
Notifications
You must be signed in to change notification settings - Fork 3
/
img_gdb.py
242 lines (208 loc) · 8.21 KB
/
img_gdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from builtins import str as text
from builtins import range
import gdb
import matplotlib
matplotlib.use('TKAgg')
import matplotlib.pyplot as pl
import numpy as np
import struct
def chunker(seq, size):
return (seq[pos:pos + size] for pos in range(0, len(seq), size))
class Imshow(gdb.Command):
"""
Diplays the content of an opencv image
usage: (eigen_gdb.py) imshow image
"""
def __init__(self):
super(Imshow, self).__init__('imshow',
gdb.COMMAND_SUPPORT,
gdb.COMPLETE_SYMBOL)
def invoke(self, arg, from_tty):
# Access the variable from eigen_gdb.py.
args = gdb.string_to_argv(arg)
val = gdb.parse_and_eval(args[0])
if str(val.type.strip_typedefs()) == 'IplImage *':
img_info = self.get_iplimage_info(val)
else:
img_info = self.get_cvmat_info(val)
if img_info: self.show_image(*img_info)
self.dont_repeat()
@staticmethod
def get_cvmat_info(val):
flags = val['flags']
depth = flags & 7
channels = 1 + (flags >> 3) & 63;
if depth == 0:
cv_type_name = 'CV_8U'
data_symbol = 'B'
elif depth == 1:
cv_type_name = 'CV_8S'
data_symbol = 'b'
elif depth == 2:
cv_type_name = 'CV_16U'
data_symbol = 'H'
elif depth == 3:
cv_type_name = 'CV_16S'
data_symbol = 'h'
elif depth == 4:
cv_type_name = 'CV_32S'
data_symbol = 'i'
elif depth == 5:
cv_type_name = 'CV_32F'
data_symbol = 'f'
elif depth == 6:
cv_type_name = 'CV_64F'
data_symbol = 'd'
else:
gdb.write('Unsupported cv::Mat depth\n', gdb.STDERR)
return
rows = val['rows']
cols = val['cols']
line_step = val['step']['p'][0]
gdb.write(cv_type_name + ' with ' + str(channels) + ' channels, ' +
str(rows) + ' rows and ' + str(cols) + ' cols\n')
data_address = text(val['data']).encode('utf-8').split()[0]
data_address = int(data_address, 16)
return (cols, rows, channels, line_step, data_address, data_symbol)
@staticmethod
def get_iplimage_info(val):
depth = val['depth']
channels = val['nChannels']
if depth == 0x8:
cv_type_name = 'IPL_DEPTH_8U'
data_symbol = 'B'
elem_size = 1
elif depth == -0x7FFFFFF8:
cv_type_name = 'IPL_DEPTH_8S'
data_symbol = 'b'
elem_size = 1
elif depth == 0x10:
cv_type_name = 'IPL_DEPTH_16U'
data_symbol = 'H'
elem_size = 2
elif depth == -0x7FFFFFF0:
cv_type_name = 'IPL_DEPTH_16S'
data_symbol = 'h'
elem_size = 2
elif depth == -0x7FFFFFE0:
cv_type_name = 'IPL_DEPTH_32S'
data_symbol = 'i'
elem_size = 4
elif depth == 0x20:
cv_type_name = 'IPL_DEPTH_32F'
data_symbol = 'f'
elem_size = 4
elif depth == 0x40:
cv_type_name = 'IPL_DEPTH_64F'
data_symbol = 'd'
elem_size = 8
else:
gdb.write('Unsupported IplImage depth\n', gdb.STDERR)
return
rows = val['height'] if str(val['roi']) == '0x0' else val['roi']['height']
cols = val['width'] if str(val['roi']) == '0x0' else val['roi']['width']
line_step = val['widthStep']
gdb.write(cv_type_name + ' with ' + str(channels) + ' channels, ' +
str(rows) + ' rows and ' + str(cols) + ' cols\n')
data_address = text(val['imageData']).encode('utf-8').split()[0]
data_address = int(data_address, 16)
if str(val['roi']) != '0x0':
x_offset = int(val['roi']['xOffset'])
y_offset = int(val['roi']['yOffset'])
data_address += line_step * y_offset + x_offset * elem_size * channels
return (cols, rows, channels, line_step, data_address, data_symbol)
@staticmethod
def show_image(width, height, n_channel, line_step, data_address, data_symbol):
""" Copies the image data to a PIL image and shows it.
Args:
width: The image width, in pixels.
height: The image height, in pixels.
n_channel: The number of channels in image.
line_step: The offset to change to pixel (i+1, j) being
in pixel (i, j), in bytes.
data_address: The address of image data in memory.
data_symbol: Python struct module code to the image data type.
"""
width = int(width)
height = int(height)
n_channel = int(n_channel)
line_step = int(line_step)
data_address = int(data_address)
infe = gdb.inferiors()
memory_data = infe[0].read_memory(data_address, line_step * height)
# Calculate the memory padding to change to the next image line.
# Either due to memory alignment or a ROI.
if data_symbol in ('b', 'B'):
elem_size = 1
elif data_symbol in ('h', 'H'):
elem_size = 2
elif data_symbol in ('i', 'f'):
elem_size = 4
elif data_symbol == 'd':
elem_size = 8
padding = line_step - width * n_channel * elem_size
# Format memory data to load into the image.
image_data = []
if n_channel == 1:
mode = 'L'
fmt = '%d%s%dx' % (width, data_symbol, padding)
for line in chunker(memory_data, line_step):
image_data.extend(struct.unpack(fmt, line))
elif n_channel == 3:
mode = 'RGB'
fmt = '%d%s%dx' % (width * 3, data_symbol, padding)
for line in chunker(memory_data, line_step):
image_data.extend(struct.unpack(fmt, line))
else:
gdb.write('Only 1 or 3 channels supported\n', gdb.STDERR)
return
# Fit the opencv elemente data in the PIL element data
if data_symbol == 'b':
image_data = [i + 128 for i in image_data]
elif data_symbol == 'H':
image_data = [i >> 8 for i in image_data]
elif data_symbol == 'h':
image_data = [(i + 32768) >> 8 for i in image_data]
elif data_symbol == 'i':
image_data = [(i + 2147483648) >> 24 for i in image_data]
elif data_symbol in ('f', 'd'):
# A float image is discretized in 256 bins for display.
max_image_data = max(image_data)
min_image_data = min(image_data)
img_range = max_image_data - min_image_data
if img_range > 0:
image_data = [int(255 * (i - min_image_data) / img_range) \
for i in image_data]
else:
image_data = [0 for i in image_data]
if n_channel == 3:
# OpenCV stores the channels in BGR mode. Convert to RGB while packing.
image_data = list(zip(*[image_data[i::3] for i in [2, 1, 0]]))
img = None
if mode == 'L':
img = np.reshape(image_data, (height, width)).astype(np.uint8)
elif mode == 'RGB':
img = np.reshape(image_data, (height, width, 3)).astype(np.uint8)
fig = pl.figure()
b = fig.add_subplot(111)
if n_channel == 1:
b.imshow(img, cmap=pl.cm.Greys_r, interpolation='nearest')
elif n_channel == 3:
b.imshow(img, interpolation='nearest')
def format_coord(x, y):
col = int(x + 0.5)
row = int(y + 0.5)
if col >= 0 and col < width and row >= 0 and row < height:
if n_channel == 1:
z = img[row, col]
return '(%d, %d), [%1.2f]' % (col, row, z)
elif n_channel == 3:
z0 = img[row, col, 0]
z1 = img[row, col, 1]
z2 = img[row, col, 2]
return '(%d, %d), [%1.2f, %1.2f, %1.2f]' % (col, row, z0, z1, z2)
else:
return 'x=%d, y=%d' % (col, row)
b.format_coord = format_coord
pl.show()
Imshow()