Skip to content

Latest commit

 

History

History
197 lines (145 loc) · 7.23 KB

README.md

File metadata and controls

197 lines (145 loc) · 7.23 KB

to_precision

Moved to Bitbucket

https://bitbucket.org/william_rusnack/to-precision/src/master/

Formatting floating point numbers to standard, scientific, or engineering notation with a specified number of significant digits.

Build Status

Created by:
William Rusnack GitHub LinkedIn Email
Eric Moyer GitHub Email
Randle Taylor GitHub

Use Latest Release

https://github.com/BebeSparkelSparkel/to-precision/releases/tag/0.0.0

Install

pip install git+"link to latest release"

standard notation

to_precision.std_notation(value, precision)

standard notation (US version). http://www.mathsisfun.com/definitions/standard-notation.html

returns a string of value with the proper precision

ex:

>>> std_notation(5, 2)
'5.0'
>>> std_notation(5.36, 2)
'5.4'
>>> std_notation(5360, 2)
'5400'
>>> std_notation(0.05363, 3)
'0.0536'

scientific notation

to_precision.sci_notation(value, precision, delimiter='e'):

scientific notation. https://www.mathsisfun.com/numbers/scientific-notation.html

returns a string of value with the proper precision and 10s exponent delimiter is placed between the decimal value and 10s exponent

ex:

>>> sci_notation(123, 1, 'E')
'1E2'
>>> sci_notation(123, 3, 'E')
'1.23E2'
>>> sci_notation(.126, 2, 'E')
'1.3E-1'

engineering notation

to_precision.eng_notation(value, precision, delimiter='e')

engineering notation. http://www.mathsisfun.com/definitions/engineering-notation.html

returns a string of value with the proper precision and 10s exponent that is divisible by 3 delimiter is placed between the decimal value and 10s exponent

ex:

>>> eng_notation(123, 1, 'E')
'100E0'
>>> eng_notation(1230, 3, 'E')
'1.23E3'
>>> eng_notation(.126, 2, 'E')
'120E-3'

auto notation

to_precision.auto_notation(value, precision, delimiter='e')

Automatically selects between standard notation (US version) and scientific notation. Values in the range 0.001 < abs(value) < 1000 return standard notation.

http://www.mathsisfun.com/definitions/standard-notation.html https://www.mathsisfun.com/numbers/scientific-notation.html

returns a string of value with the proper precision

ex:

>>> auto_notation(123, 4)
'123.4'
>>> std_notation(1234, 4)
'1.234e3'

to_precision

to_precision.to_precision(value, precision, notation='auto', delimiter='e', auto_limit=3, strip_zeros=False, preserve=False)

Converts a value to the specified notation and precision value - any type that can be converted to a float precision - integer that is greater than zero notation - string

  • value
    • The number to convert
  • precision
    • The digits of precision
  • notation
  • delimiter
    • Text that is placed between the decimal value and 10s exponent
  • auto_limit
    • Integer. When abs(power) exceeds this limit, 'auto' mode will return scientific notation. The default (3) will cause 'auto' mode to return scientific notation for 0.001 < abs(value) < 1000
  • strip_zeros
    • If true, trailing decimal zeros will be removed.
  • preserve_integer
    • If true, 'std' will preserve all digits when returning values that have no decimal component.

Implicit vs. Explicit precision

Consider the following data set:

A                 B              C              D              
----------------  -------------  -------------  -------------  
1.00000000000     0.98765432100  0.08700000000  0.00000000234  
1.20000000000     1.40000000000  1.00000000000  0.00000000002  
1234.00000000000  1.23450000000  0.02345678000  0.00000000000 

In a scientific or engineering context, one typically indicates precision explicitly by showing all significant digits. This can be accomplished using to_pecision() with its default arguments.

Using to_precision(x, 3) to render the example data set yields:

A       B      C       D         
------  -----  ------  --------  
1.00    0.988  0.0870  2.34e-9   
1.20    1.40   1.00    2.00e-11  
1.23e3  1.23   0.0235  0.00

In a business or informal context one may wish to implicitly specify precision, and render results in their simplest, least cluttered form given that precision. This can be accomplished by invoking the strip_zeros and preserve_integer arguments. Additionally, auto_limit can be used to control the threshold at which scientific notation is adopted.

Using to_precision(x, 3, auto_limit=4, strip_zeros=True, preserve_integer=True) to render the example data set yields:

A     B      C       D        
----  -----  ------  -------  
1     0.988  0.087   2.34e-9  
1.2   1.4    1       2e-11    
1234  1.23   0.0235  0 

Decimal Notation

to-precision uses decimal notation to indicate precision in cases where the result:

  • Is an integer
  • Ends with one or more zeros
  • All ending zeros are significant

See: https://en.wikipedia.org/wiki/Significant_figures#Significant_figures_rules_explained

For examlple:

>>> to_precision(120, 2)
'120'                      # Zero is not significant
>>> to_precision(120, 3)
'120.'                     # Zero is significant
>>> to_precision(100, 2)
'100'                      # First zero is significant but second is not
>>>

Demonstration

The script demonstration.py demonstrates the behavior of the various options...

$./demonstration.py 
Default (Auto Notation):
    to_precision(value, precision)

    value         precision=1    precision=2    precision=3    precision=4    precision=5
    ------------  -------------  -------------  -------------  -------------  -------------
    0             0              0.0            0.00           0.000          0.0000
    1             1              1.0            1.00           1.000          1.0000
    10            10             10.            10.0           10.00          10.000                                           
    ...
    (many cases)
    ...
    0.000123456  0.0001         0.00012        0.000123       0.0001235      0.00012346
    0.001234567  0.001          0.0012         0.00123        0.001235       0.0012346
    0.012345678  0.01           0.012          0.0123         0.01235        0.012346
    0.123456789  0.1            0.12           0.123          0.1235         0.12346